
Lambda expressions in Fortran

Arjen Markus
arjen.markus@deltares.nl

May 30, 2019

1 Introduction

Many modern programming languages have a feature called lambda expressions
that allows the programmer to pass simple expressions as arguments to some
subprogram instead of having to write a subprogram that contains the expres-
sion. Here is an example in Java:1

printPersons(

roster,

(Person p) -> p.getGender() == Person.Sex.MALE

&& p.getAge() >= 18

&& p.getAge() <= 25

);

The idea is that the expression (Person p) -> ... is more or less inserted
into the function printPersons where it is used to select only those persons
from the list contained in the object roster that satisfy the criteria. Other uses
could be to define some arithmetic function on the fly, as it were, instead of a
full-fledged Java class and method.

The question discussed in this short note is: can we do the same in Fortran
or would we need some new features and accompanying syntax (like the ->

operator in the Java example)? The quick answer is: we can get quite close
with what is already available in Fortran – even if we restrict ourselves to the
Fortran 90 standard. The only drawback from that latter restriction is that
certain syntactic details are unavailable.

A simple application of the lambda_expressions module looks like this:

program print_table

use lambda_expressions

type(lambda_integer) :: x

type(lambda_expression) :: lambda1, lambda2

1This example can be found online at https://docs.oracle.com/javase/tutorial/java/
javaOO/lambdaexpressions.html.

1

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

integer :: v

call lambda1%set(x, x+2)

call lambda2%set(x, x*2)

do v = 1,10

write(*,*) v, lambda1%eval(v), lambda2%eval(v)

enddo

end program

2 Laying the groundwork

Lambda expressions are possible in Fortran, but we need to provide some derived
types and associated functions and subroutines to make it work. Here we will
restrict ourselves to integer variables – extending this work to other data types
is straightforward but perhaps somewhat tedious. Let us start by defining a
derived type that can be used to store an expression tree, that is: we need to
store the various operations and the operands instead of the resulting values:

type lambda_integer

integer :: operation

integer :: value

type(lambda_integer), pointer :: first => null()

type(lambda_integer), pointer :: second => null()

end type lambda_integer

The type lambda_integer can contain an integer value (hence the compo-
nent value) as well as a unary or binary operation, identified by the component
operation2 and the components first and second. Arithmetic operations on
this derived type, like addition, are defined to store the expression:

function integer_add(x, y) result(add)

type(lambda_integer), intent(in), target :: x

type(lambda_integer), intent(in), target :: y

type(lambda_integer), pointer :: add

allocate(add)

add%operation = 1

add%first => x

add%second => y

end function integer_add

2Using function pointers instead of integer values to select the operation would be more
elegant.

2

(with similar versions for adding a lambda_integer variable to an ordinary
integer). This way the compiler will unravel the expression and turn it into an
expression tree.

We also need a routine to actually evaluate the expression as stored. For
this we need to set the lambda_integer variables to some value, leading to code
like:3

type(lambda_integer) :: x

type(lambda_integer) :: y

type(lambda_integer) :: expr

!

! Define the expression

!

call expr%set(x+2*y)

x = 1 ! Set the values of the "free" variables that

y = 2 ! occur in the expression

write(*,*) ’Sum of x and y = ’, expr%eval()

where type-bound procedures have been used.4.
The complication is that we do not really want to keep the original x and y

variables around – they are important for the expression, but should be consid-
ered part of it. If we were to pass the expression contained in the variable expr

to a subroutine, we would need to pass these variables too.
One solution is to wrap the pointer references via a second derived type:

type lambda_expression

type(lambda_integer_pointer) :: arg(4) ! Arbitrary number

type(lambda_integer) :: operand(4)

type(lambda_integer), pointer :: expr

contains

procedure :: set => set_expression

procedure :: eval => eval_expression

end type lambda_expression

and let the set method deal with these references:

!

! Implementation of the "set" method

!

subroutine set_expression(lambda, x, expr)

class(lambda_expression) :: lambda

type(lambda_integer), target :: x

3For conciseness, a lot of the details have been left out. See my book ”Modern Fortran in
practice”.

4These are syntactic features not available in Fortran 90.

3

type(lambda_integer), pointer :: expr

type(lambda_integer_pointer), dimension(size(lambda%operand)) :: arg

arg(1)%arg => x

arg(2)%arg => null()

arg(3)%arg => null()

arg(4)%arg => null()

!

! Correct the pointers to arguments

!

call correct_pointer(arg, lambda%operand, expr)

allocate(lambda%expr, source=expr)

end subroutine set_expression

The dirty work is done by the correct_pointer routine:

• Scan the expression tree for references in the expression to the various
arguments (in the above implementation, there is only one).

• Replace the references to the argument (x) by references contained in the
elements of arg.

Finally, a copy of the expression that was passed is stored in the lambda_expression
variable.5

3 The result

The actual implementation supports only a limited number of arithmetic oper-
ations for default integers and no logical operations at all. But the program as
shown in the introduction produces the results you would expect:

1 3 2

2 4 4

3 5 6

4 6 8

5 7 10

6 8 12

7 9 14

8 10 16

9 11 18

10 12 20

5Note that this is a shallow copy – all pointers refer to items wholly contained in the
lambda variable.

4

You could add a bit more ”syntactic sugar” and write a routine tabulate,
so that the program would look like:

program print_table

use lambda_expressions

type(lambda_integer) :: x

call tabulate(1, 10, x, [x+2, x*2])

contains

subroutine tabulate(start, stop, x, expr_array)

integer, intent(in) :: start, stop

type(lambda_integer), intent(inout) :: x

type(lambda_integer), dimension(:), intent(inout) :: expr_array

...

end subroutine tabulate

end program

so as to hide almost all the details (identifying the ”free” variable x cannot be
hidden) and make the program accept any number of expressions for tabulation.
That, however, is left as an exercise.

4 Leftovers

The code accompanying this note is far from complete – it is a mere demonstra-
tion that this is possible even without extending the syntax of the language.

Things that could be done to make it a bit more useful:

• Extend to more arithmetic operations and include logical operations

• Extend to include real data

• Consider derived types: can they be implemented in an elegant way or
not?

The basic idea already appeared in my book ”Modern Fortran in practice”,
Cambridge University Press, 2012.

The source code can be found at https://sourceforge.net/p/flibs/svncode/
HEAD/tree/trunk/experiments/lambda.f90

5

https://sourceforge.net/p/flibs/svncode/HEAD/tree/trunk/experiments/lambda.f90
https://sourceforge.net/p/flibs/svncode/HEAD/tree/trunk/experiments/lambda.f90

	Introduction
	Laying the groundwork
	The result
	Leftovers

